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An autonomous system of differential equations continuously dependent on a 
parameter is Considered. It is assumed that in the neighborhood of the bifurca- 
tion value of parameter p = PO the linear part of the system has several pairs 
of pure imaginary eigenvalues which at point PO are related by third order 

resonance relation. Signs of strong stability are established and cases of bifurca- 

tion of stability properties are indicated. Interrelationship between the contin- 

uous normal form [I] and the usual normalization [Z] for fixed values of the 

parameter is effectively applied. 

1. Prcllmfnary remarks, Letusconsiderthe r-dimensionalsystem 
of differential equations 

2’ = P (r.L)z -I- 2 (a, p)t c1 E (PI, E&s) = D (1.1) 

continuously dependent on parameter p , in which P (p) is a real r X p matrix 

and 2 (z, p) is an r-dimensional vector function holomorphic with respect to z 

whose expansion in series begins with a form of order k > 2. 

The problem of strong stability and bi~rcation of stability properties in the neigh- 

borhood of the resonance valne of parameter P = PO was considered in [1] on the 
assumption that matrix P (P) has in region D n pairs of pure imaginary eigenvalu- 

es i ih, (p) that are continuous with respect to p . 
A characteristic of point PO is that at it there exist between the eigenvahres & 

(PO) integral linear relationships, i. e. internal resonance. It was assumed in [l] 

that the order of resonance is k + 1 with h an even number. 
The obtained in Cl] signs of strong stability are fairly effective when the system 

contains resonance of order higher than three, although these signs are also applicable 
to third order resonances. However cases of resonance were indicated only with reson- 
ances of orders higher than three. 

Singularities related to particulars of ~terrelatio~i~ between the lower coeffici- 

ents of the continuous and normal forms arise in investigations of systems with third 

order resonances [l]. Because of this, in the present investigation, which by its meth- 

ods is close to that in [l], we analyze the behavior of stability properties in the neigh- 
borhood of third order resonances. One each of the two-frequency (?z = 2) and three- 
frequency (n = 3) resonances are considered. For the remaining cases of third-order 
resonances the results can be modified. The exposition is conducted for the case in 
which the number of resonating frequencies -t-i% _ s is the same as the system dimension. 

The basic constraint is expressed as follows: matrix P (p) has in region D the 
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Jordan diagonal form [3,4] with respect to p . 

2. Two-frequency resonance of third order, The 
considered system on assumptions made in Sect. 1 is represented in terms of complex 

conjugate variables as follows: 

where X,(j) are j -th order forms with coefficients that are continuous with respect 
to p,f&Js a set of n-dimensional integral vectors, and &+-c R, is a set of 
vectors with nonnegative components. 

We assume that when p = pO system (2.1) has the internal resonance 

h,” + 2?L; == 0, ?bs ( po) = As (2.2) 

where pO is an isolated root of equation 

6 (p) = A1 (P) + 2ha (f-r) = 0 

The quantity 6 (p) p re resents the resonance detuning and 6 (p) --, 0 as p --, 
PO* The detuning 6 (p) generally changes its sign when passing through pO . It 

will become clear later that this has a considerable effect on the stability property. 
Let D be some E -neighborhood of point p. . We assume E to be so small 

that there are no resonances of order ‘2 4 in D* , which is a deleted at point 

~0 region D. 
As in [l] we carry out continuous normalization in D and the usual normalization 

[2] up to third order terms in D* . 
The continuous normal form in D and the usual normal form in D* are of the 

form 

usus . = ihg(p)ms + a,(p)&%2 + ws (%IWI + G2o2) + (2.3) 

0, (II w II”‘9 

iis*us*’ = iA, (p)ws* + w,* (a,,*wl* + as2*02*) + Op* (11 o* 11’!2) t2s4) 

ws = u&, OS* = us*iii,* 

The nonlinearities of 0, are continuous and bounded in D , while those of Op,* 
are continuous and unbounded in D* as p. -+ ~0. The latter is related to that the 
detmring 6 (p) appears as a small denominator in those coefficients of the normaliz- 
ing transformations that are not resonance ones in the usual normalization in D” but 
are resonance transformations in continuous normalization (according to definition 2.1 

in Cl1 I* 
Omitting the calculations effected in the normalization process, we adduce the 

formulas that are required subsequently and which link the coefficients of both normal 

forms 

a,,* (PL) = a11 w a12* (~4 = al2 (CL) - 2i6-1(b4al h-de2 @L) G5) 

a21* b-4 = a21h4 - i~-Wa2 W2 (4 

cc,,*(p) = a22b) - i6-1(P)4 (pb2 (I4 
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Note that a, (p) are the same as the coefficients at corresponding resonance 

terms in input equations (2.1): CQ = a$& and a, = a&. We do not adduce 
expressions for ajs (p) in terms of input system coefficients; formulas required for 
their derivation can be found in [5]. 

To solve the problem of strong stability and bifurcations we shall analyze the stab- 

ility of system (2.1) at point p. and of system (2.4) in D* . An important part is 

played here by the interdependence between coefficients of both systems, as defined 
by formulas (2.5). 

The analysis of stability of system (2.3) at point ~0 may be based on the results 

obtained in [S, 71 for resonances of any odd order. 
Using the notation 

A (p.) = Im a&, B(p) = Re a,Re a2 

(or B(p) = Im a, Im as if Re a, Re a2 = 0) in conformity with [6,7] we 

obtain the following statement 

T h e o r e m 2 . 1. System (2.3) is unstable at point p. , if one of the foll- 

owing conditions is satisfied: 

a) A (PO) + 07 b) A (p,,) = 0, B (PO) > 0 

and if 

c) A (PO) = 0, B (PO) < 0 
then system (2.3) is stable in the second approximation in which it has the following 

integral of definite sign: 

v. = I a2 ho) I ~1 + I al ho) I o2 

(this resonance was also considered in [8,9] ). 
The investigation of system (2.4) in D* can be based on Molchanov’s results [lo] 

in which an essential part is played by the numbers He a,j* = Usi* which in con- 

formity with (2.5) are of the form 

a11 * = %l(P.), 42* = % (I4 + 2A hw-%4 (2.6) 

a21 * = a21 (14, a22* = a22 (14 -A QJW-~(P) 

Theorem 2.1 and (2.6) imply that the behavior of system (2.3) in D * is closely assoc- 
iated with that of system (2.4) at point p. and of functions 6 (p.) and A (p,) in 
the neighborhood of point po. 

In investigations of (2.4) we also use the following statement. 

T h e o r e m 2 . 2. For system (2.4) to be asymptotically stable at point ~1 
E D* it is necessary and sufficient, in addition to the dependence on terms OP* , 
that there exist y1 (p) and y2 (p) > 0, such that the quadratic form 

w* = Yl%*W1*2 + [yla,,* + Yza,,*lol*oz* + Y2a,,*02*2 
be negative definite in the positive cone K = {ml*, m2* > 0). 

Let us go into the proof of the theorem. First, we note that w, is the main part 
of the derivative v,’ determined on the basis of (2.4), whereI’, = yrw*r + y+,*s. 
The sufficiency is evident. 

Its necessity follows from that if by the selection of yl, y2> 0 it is not possible 
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to obtain form w* of definite negative sign, system (2.4) in the third approximation 
is either neutral or unstable. Specifically, when it is possible to ensure by the seiec- 
tion of yr, ys > 0 only the negative sign constancy of W, , then the system is 
neutral, If, however, the form w, is of alternating sign for any yr, ys > 0 , stab- 

ility of the system in the third approximation is implied by the existence in it (in 
that approximation) of unstable rays [lo]. Presence of the latter guarantees instability 
of the whole system. 

As a corollary of the results of investigation of system (2.4) close to resonance, we 

obtain the following statement, (Continuity of all functions dependent on p in D 

or II*, as well as a reasonable smallness of region D are assumed and used through- 
out the subsequent analysis). 

Theorem 2, 3. Let A (pa) and o (~0) = all @o) -i- 2% (~0) + 0. 
Then for the asymptotic stability of system (2.4) at point p E DT independently 
of terms On* , it is necessary and sufficient that the following conditions are satis- 

fied: 

1) $1 (p) < 0, 2) A w-%4 > 02 3) 0 (Y) < 0 

P r o o f, Smallness of region D and the limit relationship S (pc) -+ 0 as 
P + PO together with condition d (p,) # 0 guarantee in accordance with (2.6) 

the fulfihnent of equalities 

sign a,,*(y) = -sign ass* (P) = sign A @)8-l (EC) (VP E D*) t2e7) 

For form w* to be of negative definite sign for yl> ys > 0 it is necessary that 

%I* (f-r) and ass* (p) < 0. Taking into account (2.6) and (2.7) we obtain the 
necessity of conditions 1 and 2 of the theorem. 

Assuming that conditions 1 and 2 are satisfied, we can clarify when there exists 

the necessary selection of y1 and ys > 0. It follows from (2.7) that urs* (p) 

> 0 (V p E D*). If azl< 0, the necessary selection of yr and ys > Oevident- 

ly exists and automatica~y G (pa> < 0. If as, > 0, the sefection of Y1, yz > 0 
exists then and only then when 

%a22 - a12a21 - 0 (PM b-w1 b) > 0 

The coefficients Uj, are bounded in D and function aA&l by the theorem 
conditions is unbounded in D* , But then the last inequality is equivalent to condi- 

tion (f (p) < 0. 
Thus the required selection of yi, y% > 0 which satisfies Theorem 2.2. exists 

only when conditions l-3 are satisfied. 

R e m a r k. The proof shows that the stipulation A (110) and CT (~0) # 0 of 
Theorem 2.3 can be relaxed by the substitution for them of the requirement of UU- 

boundedness of function o (p) A (p) &I (p). That condition is clearly satisfied in 

the input assumptions. It can also be satisfied when both or one of functions A (~1 

and u (p) vanish at point i_~ = PO. 
We pass to the investigation of behavior of the stability property when parameter 

p is varied. 
The general case. weassumethat 
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all # 0, 0 (~0) # 0, A (po) + 0 (2.8) 

when the first two inequalities in (2.8) are satisfied, it is sufficient for the verifica- 
tion of conditions 1 and 3 of Theorem 2.3. at point p E D* to check their valid- 
ity at point PO . If, furthermore A (po) # 0 , the test of condition 2 reduces to 
the determination of the sign of function 6 (p) in the neighborhood of its isolated 

zero cl0 . III connection with this we introduce the sets D** = {p 1 A (po)6 (p) 

2 01. when one of these is empty, the second is the same as D * . (This corres- 
ponds to the case when 6 does not change its sign when passing through po). 

Let conditions 1 and 3 be satisfied at point f.ro. Then, by virtue of continuity 
they are satisfied in region D . Since condition 2 is satisfied on set D+*, Theorem 
2 makes it possible to assert that system (2.4) is asymptotically stable for any /-r E 
D+*. It is on this set that all three conditions of the theorem are satisfied. 

Let us investigate the behavior of system (2.4) in the considered general case,when 

even one of conditions of Theorem 2.3 is violated at point p,, . For this we shall 

elucidate in conformity with [lo] whether the system can be neutral in the third approx- 
imation. 

It follows from(2.6) and(2.8) that a,,* (p), a,,* (p) # 0 and Vp, E D*. 
Hence system (2.4) has no neutral lines on the one-dimensional faces of cone K for 
all PEED*. 

Existence of neutral lines inside cone K depends on the determinant 

a* = all* a12* 

I I a21 * a22* 
= Ql&z - 62a21- dCL)-QPp-YP.) 

being zero. 
The first two of inequalities (2.8) imply that A* # 0 and Vp E D*. 
Thus, under conditions of the general case system (2.4) is unstable in the third 

approximation if even a single condition of Theorem 2.3 is violated. It can be shown 
that the instability is coarse (is independent of nonlinearities of O,*). 

The above can be summarized by the following theorem. 

T h e o r e m 2 . 4. Let relationships (2.8) be satisfied. Then, if inequalities 
1 and 3 of Theorem 2.3 are satisfied at point p = p 0, system (2.4) is asymptotically 
stable on set D,* and unstable on D_* , When condition 1 or 3 is violated at 

point p. , the system is unstable for all ~1 E D*. 

Theorems 2.1-2.4 make possible the complete analysis of stability properties in 
the considered general case. 

Results of the above analysis are tabulated below, where the following symbols are 
used: AS for asymptotic stability, I for instability, B for bifurcation, and SI for 
strong instability. 

The Table shows that two types of bifurcation may appear in system (2.1) : an ex- 
plosive instability characterized by asymptotic stability in D* and instability at point 

POS and a one-sided explosive instability when the asymptotic stability in D+* 
changes at point l-r0 to instability which is retained in D_* . (Note that when A 
(PO) # 0 thesets D,*. if both are not empty, coincide with one of the half-neigh- 
borhoods of point po.) 
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_i 
I 

Table 

---- PROPERTIES OF STABILITY 

The instability at point PO when A (p,,) + 0 
asymptotic stability in the Table. 

AS 

: 
AS 

D;=D* 
I 

D;= D* 

a 

n 

B 

:: 
B 

SI 

SI 

explains the absence of strong 

Degenerate cases. Let us consider the cases of violation of conditions 
(2.8). 

First, we note that Theorems 2.1 -2.4 make possible the analysis of stability in 

D also when the first two of conditions (2.8) are violated. 

To do this it is necessary to obtain information on the behavior of functions a,, (p) 
and d (~1.1) in the neighborhood of point ~0 which now is the zero of at least one of 
these functions. 

Let us go into the case when A (p,J = 0 on the assumption that the first two 
of conditions (2.8) are satisfied. The behavior of system (2.1) at point p. corres- 
ponds now to cases b) and c) in Theorem 2.1. ; in case c) it is necessary to resort 
in the analysis to terms of higher order. To obtain sufficient signs of stability we use 
the integral of the model system v0 as the Liapunov function. 

Investigation of the system in D” substantially depends on the behavior of func- 

tion A (y)6-l (p) in D* . on the assumption that A (p) # 0 and \dp E D” 

we may have two cases: 
a) function A (~)a-~ (p) is unbounded in D*, 

fi) function A (~)6-l (p) is bounded in D*. 
Investigation of system (2.4) in D* in case cx , as well as in the general casecan 

be carried out using Theorem (2.3) (see the Remark). Taking into account that A 
(p,-J =z 0 we obtain the following definition of sets DC* : D+* = {P 1 A (cl)6 

(P) 2 0). As previously, when conditions 1 -3 of Theorem 2.3 are satisfied at 

point p,, system (2.4) is asymptotically stable on set D+* and unstable on set D_*. 
In case p we assume that 

p’) 3 lim A (v)h-l(p) m= k( 00 
IL-U0 

and additionally 

a22 (PO) P k ~12 (PO) =t= --2k 

A (t-4 = ~11 b&,2 (PO) - ~21 hh2 (PO) =+ ka ho) 

(2.9) 
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The app~cation of Theorem 2.2 shows that under conditions @’ and (2.9) for 

the asymptotic stability of system (2.4) at point P it is necessary and sufficient if one 

of the following groups of conditions are satisfied: 

a,, (p) < 0, ~22 (14 < k ~12 h-4 + 2k < 0 or a21 (p) < 0 (2*10) 

a,, (FL) < 0, a22 h-4 < k A (14 > /NT (14 (2.11) 

The first two of conditions (2.8) and conditions (2.9) make it possible to conclude 
that in the considered case system (2.4) cannot be neutral. Hence the violation of 

conditions (2.10) and (2.11) at some point p E D* results in instability of system 

(2.4) at that point. Assumption (2.9) makes it possible to restrict the test of condit- 

ions (2.10) and (2.11) to p = po. Hence the violation of coR~ii~ons (2.10) and(2.11) 
at point p. results in instability in D*. 

The above exposition and Theorem 2.1 bad to the following conalusion. Let 
B (PC,) > 0. If conditions (2.10) or (2.11) are satisfied at point p. , then we 

have at that point a bifurcation of the type of explosive instability. In other cases 

we have a strong instability. 

When A (po) = 0, B (po) < 0 the behavior of the system in D* is exactly 

the same as described above. Asymptotic stability is possible at point p. for which 
it is sufficient for the form 

I a2 I ~~~~~~ + (I a2 I u12 + I al I ~21bw2 + I al I a22m22 

to be of definite (negative) sign at point p. with WI and o2 > 0. 
Because of this, when this form is definite negative and conditions (2.10) or 

(2.11) are satisfied at point p. we have a strong asymptotic stability. 

Let now A (cl) E 0 (Vp E D). The behavior of the stability property of system 

(2.4) in D* in the third approximation, as implied by (2.6), is independent of stabil- 
ity properties of the system at the resonance point pLo . However in the case of asy- 
mptotic stability of (2.4), the closeness to resonance apparently affects the size of 

the attraction region, since as previously On* + 30 , as ~1 + po. The necess- 
ary and sufficient conditions of asymptotic stability are defined in Theorem 2,2 , and 

the behavior of system (2.3) at point p. was described above. 
Note that in practically important situations the case of A (p) f 0 may be acc- 

ompanied by the identities asj (p) -z 0. Investigations in D* can be based on the re- 
sults in [ll, 121. 

The situation described above is obviously realized in Hamiltonian systems, for 

which this problem can be solved on the basis of a number of well known results, in 

the theory of Hamiltonian systems using the continuous normal form. 
We would also point out that the case when A (uO) = 0 but A (p) # 0 (V p E 

D*) may occur in the analysis ofsystems that are close to Hamilto~an. 

3. The three - f r e q u e n c y r e s o n a n c e. Let us consider system 

(2.1) in which s = 1, 2, 3, and assume that it has a unique internal resonance of 
the third order 

111 (l-r*) + 3L-2 (P,) i- ha (lr,) = 0 (3.1) 
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The normalization process in D and D* yields the following systems: 
_ 

that correspond to the continuous normal form in D and the usual normal form inD? 
The properties of nonlinearity of Ofi , and O,* are analogous to those describ- 

ed in Sect. 2. The relation between coefficients of normal forms is 

asj *=a sj - ia,C$-1 (p), j # s # k; j, s, k = 1, 2, 3 (3*4) 

ajS 
*- 

- %jj, 6 (iL) = A, (PI + k2 (P) + kJ (P) + 0 for P -4 )l.o 

We introduce the notation o,j (p) = Re CC,j (/A) and csj = IIB a, (p)& (p) 
(note that Csj = -QJ). 

T h e g e n e r a 1 c a s e. We assume that at point pto 

csj (Pa) = c.sjo # 0 (VS, i I s # i>7 ajj (cl01 # O 
(3.5) 

We denote clso = a, csr” = @, and crc = y. 
Investigation of system (3.1) with conditions (3.5) and p = cl0 is based on the 

following results obtained in [S, 133. 

T h e o r e m 3 . 1. Let conditions (3.5) be satisfied. Then system (3.2) is 
stable at point p. in the second approximation then and only then when 

sign a = sign p = - sign y (3.6) 

(which corresponds to two combinations of signs ( $ f -) and (-- i-)). In other 
cases the system is unstable irrespective of the linearity of 0,. 
When (3.6) is satisfied, system (3.2) in the second approximation at point PO admits 
the following integral of definite sign: 

V. = Bwi - ywz A- amy (3.7) 
The theorem thus formulated is a corollary of Theorems 2.1, 2.2 and (3.1) in [6 1. 
Conditions (3.5) and (3.6) ensure that conditions (2.2) and (2.5) A in [6] are satis- 
fied . The form of the integral (3.7) is established by direct CalCUlatiOn, as in [13]. 

bet us now consider system (3.3) in D* . its analysis in the third approximation 

conforms to [lo]. We pass in (3.3) to variables ok* and consider the model system 

1/C&** = o,*z;u,i*oj* (3.8) 

(csj* c.l: Reo,j* = U,j(y)+ C~j(~)~-'(~), S5k.C aG* = 'G(P)) 

where all coefficients a,j and Csj are continuous and bounded in D. 
We introduce matrix A = (U,j*)13 and Aj which are obtained from A by 

cancelling the j -th column and j -th row. We then consider the totality of seven 

systems of equations 

Aq = I, Ajq”’ = l(j), j = 1) 2, 3; UssQs = 1, s = 1, 2, 3 (3.3) 

where q = (qr, qs, qs), I = (Ir, Ia, Zs), and I, = I or 0 (V,), and q(j) and 
l(j) are projections of vectors q and 1 on the planes qj = 0 and 2j = 0. 

It was shown in [lo] that for system (3.8) to be unstable it is necessary and suffici- 
ent that the totality [of systems] (3.9) has a strictly positive solution for I # 0. 
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Instability is ensured by the existence of an increasing particular solution contain- 

ed either inside the cone x = {We*, as*, os* > 0) when the three-dimensional 

system in (3.9) has a positive solution, or on the one- or two-dimensional faces of 

cone K , if one of the corresponding systems of the totality (3.9) has a positive solu- 

tion. 
It is obviously clear that when 

(3i) tajj (PO) > O) (3.10) 

then system (3.8) is unstable, since there exists an increasing solution on the j -th 

one-dimensional face of cone K. 
Let now 

(Vi) lajj (PO) < O) (3.11) 

Let us ascertain if there exists an increasing solution on the two-dimensional faces 
of cone K. 

The calculation of determinants Aj = 1 Aj 1 yields 

A, = -cqQP + O(C~-~), A, = af.M-" + O(cV1) 
A, = -+t2 + 0(&-l) 

These equalities show that the determinants Aj under conditions (3.5) are non- 
zero and retain their sign in D* . From the analysis of system Aj q(j) = Z(j) with 

Z(j) = (1; 1) we conclude that at least one of these has a positive solution when 

conditions (3.6) are violated. 

Thus the coarSe instability of system (3.2) at point p,, is linked to the violation 

of (3.6) and results in instability also in D*. 
If conditions (3.6) are satisfied, system (3.8) has no increasing solutions on the 

two-dimensional faces. Instability of the system is only possible in the presence of 

an increasing solution inside the cone K. 
For the investigation of system Aq = 1 # 0 we, first of all, determine its deter- 

minant 
A = I A I = A,t2 + 0(6-l) 

(ho = - a~ ,$ ajl+ aB $ aj2 - $y i ajs) 
i=l j=l j=l 

we assume that A0 # 0. Then the determinant A =j= 0 and retains its sign 
in D*. Calculations show that an increasing solution exists inside cone K , if con- 
dition A0 > 0 is satisfied. Since all determinants As # 0 (by virtue of (3.5)), 

there are no neutral lines on the faces of cone K . They are not present on the one- 
dimensional faces when Ujj (p,-,) # 0 (Vi) , and inside cone K when A,, # 0. 
Hence when conditions (3.6) and 

A, (~0) < 0, ajj (PO) < 0 (Vi) (3.12) 

are satisfied, system (3.8) is asymptotically stable in D* . 
when conditions (3.6) are satisfied, only the stability of the initial system at poi- 

nt p,, remains uninvestigated. To obtain sufficient signs of stability we use the in- 
tegral of the model system (3.7). Its derivative calculated for p = p. on the bas- 
is of (3.2) is 
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If the form Mfi is of definite sign in cone K , its sign when aijO < 0 is opposite 
to that of 1/, , and this leads to sufficient conditions for asymptotic stability. lt 
remains to check whether the requirement for form ws to be of definite sign when 
ajji < 0 contradicts conditions (3.6). 

For this We set inW, Oi= ---a?, 0% = o$, and (~a = ---FT. All these fig- 
ures in conditions (3.6) are positive. At that point of cone K we have for W, the 
expression 

Wa = --a&A., 
hence sign W2 = sign A,. 

Thus the necessary conditions for form W2 to be of positive sign opposite to that 
of V, are 

(3.13) The pattern of signs in (3.6) must be (i- $- -) and A, < (1 , 
( 3.14) The pattern of signs in (3.6) must be (- - +) and A, > 0 _ 
The existence of forms W2 of definite sign opposite to that of V0 when eondi - 

tions (3.13) and (3.14) are satisfied is fairly obvious. Thus, for example, if in Wa 

all ajc < 0 and the pattern of signs is ( -i- i- -), then (3.13) is satisfied, and 
W, has the required property of definite sign, If among a/j0 there are positive 
ones, it is not difficult to ascertain that system (3.2) withconditions(3.5)sat.isfied is 

unstable in the third approximation. (It can be shown that the instability is coarse). 

From the above follows the theorem. 

Theorem 3. 2. Let the investigated system with resonance (3.1) be such 

that conditions (3.5) and A, (po) # 0 are satisfied. 
1) If either (3.10) is satisfied or (3.6) is violated, there is a considerable instabi- 

lity at point &. 
2) If (3.10) is violated (i. e, (3.11) holds) and (3.6) is satisfied, then, when As 

(PO) > 0 f the system is unstable in D” . If then the pattern of signs in (3.6) is 

(_ - +) and form W, is of definite sign, we have bifurcation at point E”o , 
which shows that instability in D* is replaced by asymptotic stability at point pa . 

3) If (3.10) is violated and (3.6) satisfied, the system is asymptotically stable in 

D” , provided that A0 < 0 . If the pattern of signs in (3.6) is (+ $- -) and 

the form Wt is of definite sign in cone K = foj > 01, we have at point PO 

strong asymptotic stability. 
This theorem does not include the case of A0 (pO) = 0 . That Case can be 

analyzed using the properties of A0 (p) in D * . We shall not dwell on the invest- 

igation of cases associated with vanishing of some of the numbers Ujj (/JO) and Csj 

@3 * An example of the analysis of degenerate cases WaS given in Sect.2 for two- 

frequency resonance. 
We note in conclusion that the application of the majority of results obtained in 

Sects. 2 and 3 requires the knowledge of coefficients of the Continuous normal form 

only at the resonance point p0 , supplemented by the knowledge of resonance detun- 

ing 6 (p) in the neighborhood of point p0 . Hence it j.s sufficient in practice to 
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derive the normal form only at point p = p. for solving the problem of strong stab- 

ility and bifurcations. 
The situation in which the sign of the detuning 6 (u) is unknown is fairly real. 

It is obviously realized when the eigenvalues of all parameters are only approximately 

known, On the basis of this investigation it is possible to state that the analysis of stab- 

ility under such conditions is far from reliable. 
Considering the approximate system as imbedded in set (1. l), so that some un- 

known value of parameter p* E D corresponds to it in that set. Investigation of 

stability yields reliable results, if system (I.. 1) does not contain bifurfaction of the 

stability property and, thus, the character of stability is the same for all u E D, in- 

cluding p*. 

The test for the presence of bifurcation does not require the knowledge of the de- 
tuning sign and of the exact values of coefficients of the normal form, only the signs 

of some coefficients of the continuous normal form are needed, and their approximate 
values can be used. 

The investigation of strong stability of system parametrically disturbed may thus 
be, considered as an investigation of stability of systems known only approximately. 

4. E X a m p 1 e. Let us consider the system of differential equations 

2s.’ + V (p) 2s = z,(s) (p, z, 2’) + z,(3) (p, z, z’) + . . . + = z, (p, z, z’) (4. I) 

restricting the investigation to possible bifurcations in this system. 
We write the forms Z,(‘) and Z,@) in the form 

(4.2) 

By substituting variables xS = zS - A,-‘zs’ we reduce (4.1) to the system 

zg’ = ihsra + Xsc2) (x, 2, p) + Xsc3) (I, i, p) + . . . (4.3) 

Let us investigate the structure of coefficient of forms X,@) and XSC3). It can 

be established (see [S] ) that the real parts of these coefficients are made up using only 
a combination of coefficients b$ (b$\, d$), 

$2 (a$& c$JJ. 
and their imaginary parts by using ayi, 

In conformity with this we divide all terms in (4.2) in two groups. To the first 

group we assign terms with coefficients b$, b$& and d$, and the remaining to 

the second. 

If in (4.1) there are only terms of the first group, the coefficients for forms XSt2) 
and XSC3) are pure imaginary. It can be shown that then the coefficients in both nor- 
mal forms are pure imaginary in the second and third orders. 

If, however, (4.1) contains only terms of the second group, these coefficients in 
(4.3) are real. In the continuous normal form the coefficients at second order terms 
are real. In the third order the coefficients in both normal forms are complex !>ut, 
when all b&, = d$)k = 0, they are pure imaginary . 
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Let system (4.1) with s = 1, 2 have resonance (2.2). It follows From the above 
that when only terms of the first group are present in (4. l), the coefficients oL1, a,, GZjs, 
and aj,* are pure imaginary. But then A (p) EZ 0 and ajs E 0, and conditions( 2.7) 
and (2.8) are violated. 

If only terms of the second group appear in (4. I), then (ri and CL% are real, 
A (~1 = 6 t and (2.8) is violated. When coefficients ojs are complex, condition 
(2.7) is generally satisfied. It is obviously not satisfied when b$& = d&Y&= 0. 

Both cases are degenerate and were discussed at the end of Sect. 2. Note that in 
both of them B (p) # 0 and, when B (po) > 0, then in both degenerate cases the 
following types of bifurcation may be realized in system (4.1). Instability changes 
at point p. to stability in any finite order in D*. For the realization of such case 
it is sufficient, for instance, that function Zs (p., z, z’) be independent of z‘ or 
contained Z’ only of even powers. When these conditions are satisfied, the coeffici- 

ents of both normal forms are pure imaginary in any order. 

If both groups of terms are present in (4.1), the coefficients of the two normal 
forms are complex, and all cases described in the course of investigation of the gener- 

al case in Sect. 2 can occur. 
Let now in (4.1) s = 1, 2, 3 and (3.1) be satisfied. As in the case of two- frequ- 

ency resonance, the general case can only be realized when (4.1) contains terms of 

both groups, and then Theorem 3.2 applies. If only terms of the first group are pres- 
ent in (4. I), all of formulas (3.5) are invalid, since csj = Im as ?~k = 0 and asj = 

Re U,j S 0. If (4. I) contains only terms of the second group, then again csj m 0, 

but ajj CXI be nonzero. 
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